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ABSTRACT: In this paper the logarithmic transformation of Fleming
[1] is used to discuss a specific problem of controlled diffusions.
The problem is to minimize a certain quadratic functional of the
applied drift while satisfying the requirement that the place where
the process exits a domain is not in a specified subset of its
boundary. The main result is that the solution of this problem is

given by the logarithm of a related exit probability.
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I. INTRODUCTION AND STATEMENT OF THE THEOREM

In this paper we are going to use the logarithmic transforma-

tion discussed in [1] to solve a certain stochastic control problem.

To see our problem in perspective, it is convenient to start with
the basic result concerning the logarithmic transformation that
Fleming discussed in Section 2 of [1].

d .2

Let & cR be a bounded domain with C boundary. The

functions o(x) (dxd non-singular matrix valued) and b(x)
GRd valued) are assumed to be Lipschitz on md and, along with

0-1(x), are bounded. The Markov diffusion process §&(t) 1is

defined by the stochastic differential equation
ds (t) = b (t))dt + o(5(t))dw

where @ is a d-dimensional Brownian motion. ln will denote the
first exit time of &(t) (and also of n(t) below) from an open
set Dc Rd. a(x) 1is defined to be o(x)o(x)', where the

P
denotes transpose. Fleming showed that if ¢ € C“ﬂRd) and we

define
RQ(X) = Ex[exp(-¢(g(1A))J] (1.1)
= l - ' -1 &
L(x,v) 5 (b(x)-v)'a(x) “(b(x) v).&cmm - i
NTIS Wiita Section
A Bult Section E]
then UNANNOUNCED a
JUSTHICA TN SUSIS
BY o
[4(x) = -log 8 (x) DISTAID 22 AR 000
:i)n! .\‘n‘.lC.lflj




is the solution of the following stochastic control problem:

i

min E[IOAL(n(S),v(s))ds + @(n(TA))] (1.2)
subject to

dn(t) = v(t)dt + o(n(t))dw, n(o) = x | (1.3)
where the minimum runs over all n(t) which solve such an

equation with v(t) bounded and progressively measurable. More-

over the minimum is achieved by using the feedback control law,

vi(x) = b(x) - a(x) VI (x).

Now suppose we try & = +®.x . in the above, where N c 9A.
N
The natural interpretation of (1.1) is

g(x) = P LE(T,) € NI, (1.4)

-log g(x).

I(x)

In ¢€1.2), ¢ becomes an infinite penalty for n(TA) € N°. We in-
terpret this as adding the constraint n(TA) €EN to (1.3) and
replacing (1.2) by

A

min E[J L(n(s),v(s))ds]. (1.5)
0

Our goal is to prove that I(x) defined by (1.4) is still the




solution of this constrained control problem and that v*(x) given
by the same formula is an optimal feedback control. The result that
we will prove is stated more carefully below, followed by some remarks
preparatory to the proof. The proof is given in Section 2. We
conclude with a simple example in Section 3. \ ]
The constraint n(lA) € N forces us to consider v(+)'s which
are unbounded; if v(*) 1is bounded in (1.3) then n(lA) has positive
probability of being in any specified open subset of 3a. To
describe the collection V of v(:)'s to be considered in the
minimization in (1.5), we bggin by requiring that, associated
v € VXO, there be an increasing family {th} of o-algebras and an
adapted d-dimensional Brownian motion @ so that v(-) 1is
progressively measurable with respect to the 23%. Next, we require

that a progressively measurable process nv(t) be defined satisfying

(a) nV(O) = X (1.6a)
(b) if D is open, contains X and D c A, then D (1.6b)
(the exit time of n from D) is finite a.s.,
:
1
(€) foxr £ €0 the following equation is satisfied: (1.6¢)

A

dnV(t) = v(t)dt + o(n'(t))dw,

Here 1, is taken to be lim 'y where Dn is a sequence of sub-
n
domains for which Dn c Dn+l and UI)n = A, (The notation an A

will be used to describe such a sequence.) This definition of 1

A

does not depend on the particular such sequence used. Implicit in




(¢) 1is the assumption that, for any subdomain D as in (b),

‘D
] [v(t)]|dt < a.s.
0

This is sufficient for us to apply Ito's lemma for t < 1ps see (4].

However, v(t) may behave badly as t ~» Lao consequently 1lim nv(t)
1
v =
may not exist. We define the statement 'n (lﬁ) ¢ N' to mean that
there exists tnflA and x ¢ N so that 1lim nv(tn) = X, i.e. there
exists a limit point of nv(t), as tflA, which is not in N. The

following admissibility condition is now the precise statement of the

constraint mentioned previously:
r[n"(zA) ¢ N] = 0.

V‘ is the collection of all those v for which the above
-0

requirements, including the admissibility condition, are all
satisfied.

Theorem: Let N < 3A be closed and x, € A,

= 0

(a) Suppose that v € V‘ . Then

L,
LA <
FIJ L(n (s),v(s))ds] > l(xo) (1.7)
0
(b) There exists v € Vx for which v(t) = v*(nvtt)), where
0

vi(x) = b(x) - a(x)VI(x),

acdeiabie




and equality is achieved in (1.7).
We will use N0 and N° to denote the interior and compliment
of N computed relative to 23A.
Right away we can dispense with some trivial cases. If

0 and the theorem is trivial. ( By the

(L1}

glx) = 1, then I(x)
strong maximum principle applied to equation (1.8) below, g(x) 1is
either identically 1 or strictly less than 1. Likewise it is
either identically 0 or strictly positive.) If g(x) = 0, let Nn
be a sequence of closed sets with non-empty interiors so that

NN = N. Because the interiors are non-empty,

n

ga(x) = PLIE(T,) € Nj] > 0,

and ﬁn(x\ w O, If n\(t) satisfies the admissibility condition
for N, then it also does for Np. The theorem in this case

implies that

1
A ¢
E[J l,Uﬁ(s),v(s))ds] > =lug §._ (%)
0 n-

Letting n + « we see that
1

.
la[f L(n'(s),v(s))ds] = +=,
0

This shows that it is enough to prove the theorem in the case

U € gix) < 1.




(¢
The conditions on A,0 and b imply that g € C°(A) and
satisfies the following equation on A:
1y ¥ 3
) ¢ Q + ) b.po = 0 (1.8
. ; XX S,
i3 LiTxg X i TN
with
.0
| on N
y ‘ >
gix c

0 on N

(This can be proved by approximating X\ by C°  functions

to obtain C: approximations of g which satisfy (1.8). Now the
Schauder interior estimate [3] Theovem 6.2 gives the precompactness
of these approximations and their derivatives up to second order.
From this it follows that g € C:(A) and satisfies (1.8).) This

implies, since g > 0 in A, that 1 € C"(Ad) and has boundary

hehavior

)
0 on Nl

Flx} - {1.9)

+o on N“.

One checks, using (1.8), that 1 must obey

0=3 fa I +Hx¥VI(X) in A, (1.10)




v ——— ——————— .

Here, as in [1},

H(x;p) = - %sw'utxn\ * b(x)-p
= min{v.p * L(x,v)}
\.7
= (v") P ¥ Llxge)
where v* = b(x) - a(x)p 1is the unique v achieving the minimum.

Rewriting (1.10) as

0 = i N D RS min(v-l‘ * Lix, xv)}, (1.11)
S L e :

we see why one might expect the theorem to be true; (1.11) is the

appropriate dynamic programming equation.




I1. PROOF OF THE THEOREM

Consider part (b) of the Theorem first. Since \* is locally

Lipschitz, the equation
* ® = 3 ]
dn (t) = v [(n (t))dt + gln {t]))de, n (0) = X

has a unique solution for ¢t < Ty (See [2] or [4]). Following
the standard procedure in such matters, we can take any subdomain D
with D« & and apply Ito's lemma in conjunction with (1.11) and

- . - X % ®
the fact that the minimum is achieved by v to see that

1DAT

I (xt,} = l:[[ l.(r]* (s \.\-*(v\* tsiEn)ds} & Bl l(VYR( il‘ A T)h. £2.1)
o
Now letting D + A and T t +=, the first term on the right
approaches

{
A
r[[ l(n'(s).v'[ﬂ'(s)\)dsl

o
by the monotone convergence theorem. The second term on the right
in (2.1) is not so simple; even if we already knew that n*
satisfied the admissibility requirement, since 1 is unbounded
near portions of the boundary, it i1s conceivable that we get a
positive limit for this term. We can, however, draw the following
conclusions:

i
A
[(xy) 2 rlJ Len*(s),v (0" (s)))ds) (2.2)
\]

1(xq) 2 E[l(n*(H‘Alﬁ)]. (2.3)




9

The second of these implies that n*(t) satisfies the admissibility

condition. To prove this let Un = {1f{x) < n} -and Am be a sequence
: of subdomains with A +A. Set D = 0. 0N A - it
i m n,m n m
1
]
{ follows that [D = 1. A PRSI " T
n,m n “m
* B .
I(xu) > E[I(n (lv A w Ty, (2.4)
n “m
Since T, = lim I\ , we see that
g m “m

sup I(n*(s)) > n
055<IAAT

el s it B

implies that, for all sufficiently large m

()

sup I(n*(s)) 2 s
(<s<t, AT
- A
m

This in turn, implies that I(n*(t; A T, A T)) = n. Using this
n m
in (2.4) we have that, for fixed n,

n-P{  sup 1(n*(s)) > n]

0§S<IAAT
< lim n-Pp| sup I(n*(s)) > nj
m -+ «© 0<s<t, AT
m
| in E 5
| < lim E[I(n (TG ATy A T))] < I(xo).

Thus,
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P[ sup I(n*(s)) = +=) = 0.
0§s<1A

But if n(TA) € N in the sense described, then by (1.9),

sup I(n*(s)) = +o, This proves the admissibility condition.
0<s<T
- A

The property that By S @S for D < A follows from the

sinadtBh o makin i,

fact that v* is bounded on D.

In light of (2.2), the proof of (b) will be complete once we

show

@
A

*
I(xo) < E[J L(n (s),v*(s))ds].
0
But this is precisely the conclusion of part (a) of the theorem,

to whose proof we now turn.

Here we start with the solution of the equation |
dn’ (t) = v(t)dt + o('(t))dw; n(0) = X

associated with a given v € Vx . The objective is to prove
0

T
A
E[IO LMY(s),v(s))ds] > I(xq)-

We assume that the quantity on the left is finite, for otherwise
i there is nothing to prove. The usual Ito calculation has the same

difficulty as before; how do we know that E[Knv(TD A T))] -0 as
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as Dt A and T ¢ «? This ditficulty can be circumvented by

replacing the boundary values 4wy e for 1(x) with some bounded
e R N 2..d
approximations \P“. Specifically, take a sequence "n € C"R)
with U ¢ @ < Pherr Ny 7 0 onoa neighborhood of N (which
c

depends on n) and \I‘n(.\) ¢ + if x € N This is possible since

N 1s closed. It we let

i)

g (X) = B lexp(-0 ((13))))

it

Lo )

v 'lo‘\:[g“(.\)].

then ’:nl\) X)) and In\x) ol e S It 15 sufficient therefore
0 prove that for each fixed n,

{

A
v
lilf Lin (s),v(s])ds] > 1 (.\)).
0 = n (
Just as before, 2 satisfies (1.7) and ln satisfies (1.11). Now
however, ln € C(A) with l"(x) = @n(x) on AN,  The standard

application of 1to's lemma to equation (L.11) for 1"(.\) implies that
for any subdomain D with D e A,

1“/\'1'
. g v o
ln(xu\ IzljU V() ,v(s))ds + l“(n “I\ A )y

Now, letting D + A and T + +& works. @ntx) = 0 on
. a neighborhood of N, and the admissibility condition implies that
nity, A T) is in this neighborhood as D+t A and T + +& with

probability one. Since [,(x) is a bounded function, the dominated

convergence theorem implies that




32
E[In(nV(ID AT))] »0 as D4 A and T t +o, 1

The convergence of the L term is the same as before and we conclude

that

TA

I_{%,) ¢ E[J L(n"(s),v(s))ds]. !
M Ol = 0
Letting n + » completes the proof of the theorem.

ITI. A SIMPLE EXAMPLE: THE BESSEL PROCESS

The theorem above implies that whenever we can explicitly

- S A g s st

_solve the Dirichlet problem for the generator of &(t) on A with
boundary values XN‘ we can give an explicit solution for an
associated stochastic control problem. As an example, let d =1
and A = [0,a] (for any a > 0). If b(x) =0 and o(x) 21

then &(t) 1is simply Brownian motion. Let N = {a}. We have then

pix) = B IEEv ) =0l =%,
10 = -log(X), vIx) = %,
vy =0 - (-3,
dn*(t) = —1— dt + dw.

n (t)

%
Thus n (t) 1is the Bessel process associated with 3-dimensional
*
Brownian motion B(t); n (t) = |B(t)|, see [4]. In the present
case L(x,v) = % vz. According to our theorem, the Bessel process

* il
n (t) minimizes
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1
A
Ex[fo % v(n(s))zds]

among all dn = v(t)dt + dw for which P[n(TA) = 0] =0 .
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